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Abstract

This paper develops methods for noninteracting control of articulated, possibly
flexible, multibody space vehicles based onthe following diagonalized equation of
motion: & 4 C(0, v)= €. Noninteraction implies that at each fixed time instant the
cent rol for each degree of frecedom isdecoupled froin al oft he other degrees of freedom.
The diagonal equations are obtained by using the recently developed mass matrix
factorization AM(8):=m(0)m* (0), which is readily implemented using the spatially
recursive filtering and smoothing methods advanced by the authors inrecent years.

1 Introduction

The diagonal equations of motion result by combining lLagrangian mechanics withthe
mass matrix factorization

M = [I + HpK D[4 H$K) (1.2)
in which 1, ¢, D and K are spatial operators mechanized recursively by suitably
defined [1]- [2] spatial filtering and smoothing algorithms. Use of this in the system
kinetic energy K(0,8)=16"AM(8)0 results in

A

K(0,0)= 2 1w =S w2 (k) (1.2)
2 k.1
wherev = [v(l), . . .,¥(M)]is a new set of variables related to the joint-angle rates
by
v=D3[1+ H$K]0 (1.3)

In these new variables, the kinetic energy is diagonalized in the sense that it is a
simple sum of the squares of the total joint rates /(&) overall of the A7 joints, This
iS in contrast to the original expression (0, 0)= ;0 M(8)0 which involves the mass
matrix M(0) as a weighting matrix. The diagonal equations of motion o+4C(0,v)= €
are obtained in this paper by applying classica Lagrangianinechanics methods to the
above diagonalized kinetic energy. The new variables v have a physical interpretation
as time-derivatives of l.agrangian quasi-coordinates, similar to those typically encoun-
tered [.3, 4] in analytical d ynamics. A nother key termin the new equations of motion
is the forcing “input” e =[e(1),. . . . €(AN)] appearing on therightside of the equa-
tion. This term is related to the applied moments 7' by means of the configuration
dependent relationship

c=m Y O)T = D3I - HYK)T (1.4)
The operators H, 1, K and I are mechanized by an inward filtering operation [1].
The inputse aso have a physical interpretation. The input €(k) at the k' joiut can

be thought of as being that part of the applied moment ? (k) that dots mechanical
work at this joint.

The quasi-coordinates v appearing in the diagonalized equations of mnotion are
closely analogous to the innovations processextensively investigated [5] inthearca
of linear filtering and estimation for state space systems. Theinnovations process [5]
i S acentral ingredient in factoring, diagonalizing, andinverting state-sl)ace system




covariance matrices by means of Kalman filtering and smoothing algorithms. The
innovations process plays a similar role in the dynamics of mechanical systems [1 ,6,7].
The analogy between estimation theory and robot dynamnics has been one of the central
themes investigated by the authors [1, 2].

2 Diagonalization in Velocity Space

A diagonalizing transformation can be found in velocity space. This transformation
replaces the joint-angle velocities 8 with a new set of velocities v, without replacing
the configuration variables 8. The search for this transformation begins with the
following factorization of the massmatrix.

Assumption 1 There exists asmooth,differcutiable ana tnveriible functionm(0),
with inverse denoted by k?{(?), which factors themass matriz as M(0)=m(0)m* (0)
for all co nfigurations. The funclion m(0)neednot be the gradient of any
junction,

Lemma 1: The equations of motion using the (0,v) coordinates are

U4 C(0,v)= ¢ (2.5)
with the new Coriolis force vector C(O,u)::E(mu-'éb*MOO) and € =0)T. Thc
corresponding kinematic equation to obtain the joint-angle rates 0 is 0 =£(0)v |

These equations of motion are considerably simpler thanthe original ones. Themass
madtrix here is equal to the identity matrix. The most critical element leading to
the above diagonalized equations is themass matrix factor m(@). A numerica (e.g.
Cholesky-like) factorization of the mass matrix at cach configuration canbe used to
obtain a candidate factor m(0).However, it may notbe easy to interpret physically
tile corresponding transformed] variables.

Recent results [1, 6]have established that the mass matrix canbe factored and
inverted using methods widely usedin linear fiitering and estimation theory. These
results arc summarized by the following; identities, whose proof can be found in [1, 6].

Identity 1
M =HpMop 1" (2.6)
M = [I+H¢ KD +HeK] (2.7)
4+ HpK] ' = 1- HypK (2.8)
M-I =[] -- HYK]*D '[] - HY}K] (2.9)

The innovations factorization in ldentity 1 leads to a set of diagona equations of

motion. To this end, define the operators m(0)and £(9) as
m(o) = T4 HeKID?  €0)="'m- Y(0)= D[] - HypK)] (2.10)

and

M(0)=m(0)m*(0); M O)=£(0)£(0) (2.11)
The function m(0) so defined satisfies all of the conditions in Assumption 1, although
verifying the condition of differentiability requires the following more careful argument.
The operators H and ¢ are smooth and differentiable functions of the coordinates,

SO the only potential troublespot is in the differentiability of the articulated body
quantities, particularly the inverse D='of the diagonaloperat or 1) = H P *. This




diagonal matrix Dis always positive definite and invertible. Consequently, D=1 is
always a smooth and differentiable function of 0. ‘i’bus, m ={I 4 IId)K]D% is aso
a smooth and diflerentiable matrix function. Thus, m(0) satisfies al the conditions
in Assumption 1.

O(N) Algorithms for C(0,v)

An algorithm to compute C(O, v) recursively is described below. It is assumed that
V as well as the various articulated body quantities have been computed and are
available prior to these computations.

A lgorithm |
P0) = o
for k=1.. N
X(k) = Qs(k )P(k)
P(k) = ¢k, k - )Pk - D" (k, k- 1)-{ X(k)4 X*(k)
y(k) = (ks & = D)y(k - D+2[V(k)x M (k)- X (k)4 -X*(k )]V (k)
Pk, k - )Pk -1)V(k - 1)- P(k)Yy"(k41,E)V(k+1)
c(k) = %I)%H(k)y(k)
end loop

This O(N') agorithm proceeds fromn tip-to-base and aso solves the forward dynamics
problem in the (O, ») coordinates.

Coriolis Force Does No Work
The Coriolis term C(0,v) is orthogonal to the generalized velocities v and therefore
dots no mechanical work.

Lemma 2: v*C(0,v)=0 n

The orthogonality of the nonlinear Coriolis forces is similar to the orthogonality
condition w . w X I-w= O of the gyroscopic force term in the equations of motion
for a single rigid body moving with the angular velocity w. In contrast, the corre-
sponding Coriolis forces termC(O,é) in the regular equations of motionin dots work,
i.(!.,O*C(O,‘O);é O. The non-working nature of the Coriolis forces has an interesting
implication.

Lemma 3: The rate of changeof we kinelic energy is the dot product of the
generalized forces and generalized velocities
1 . * ~
%KJ(O, u):§u‘u =1t [e-C(0,V)]= V¢ (2,12)
B

Noninteracting Control

The diagonal equations can also be used for to design controllers that are decoupled
or non-interacting in a quasi-static. sense. The terin quasi-static. denotes the idea that
fora fixed time instant the control is decoupled. The analysis and control design is
simpler because the equations of motion used in this design are decoupled,

Control1 (@) The rate fecdback control €= — cv inwhich ¢ is a positive diagonal
control gain matriz renders the systemn stable in the sense of Lyapunov.

(b) The feedback control € = —cyv - eyl II[)A’ - Y{(0)]) in which c, and ¢y are posi-
tive, digonal control gain natrices, causcsthe system o reachthe preseribed configu -




ration Y and drives the velocities tozcro.

3 Conclusions

The diagonalized equations of motions presentedhere arc very closely related to the
body of knowledge [1,2,6,8] recently developed bythe authors on spatially recursive
algorithms for inverse and forward dynamics. The present paper complements and
builds upon the previous work by writing explicitly the diagonalized Lagrangian equa-
tions of motion which correspond to therecursive algorithms. The focus here is on
the new eguations of motion, on the diagonalizing transformations required to obtain
them, and on the physical interpretation of the transformed variables. The results
presented embed in a single diagonalized equation several of the spatially recursive
algorithms previously devclop ed. This provides an additional step towardan increas-
ingly more succinct statement of the equations of motion for articulated multibody
systeins.
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